QUASI-COMPLEMENTED ALGEBRAS

BY

T. HUSAIN(1) AND PAK-KEN WONG(2)

ABSTRACT. In this paper we introduce a class of algebras which we call quasi-complemented algebras. A structure and representation theory is developed. We also study the uniformly continuous quasi-complementors on B^* -algebras.

1. Introduction. Complemented Banach algebras were introduced in [11] and have been studied by various authors. The present work is an attempt to generalize these algebras.

The concept of quasi-complemented algebra is introduced in §2. Let A be a semisimple quasi-complemented algebra in which every maximal modular right ideal is closed. We show that the socle of A is dense in A. This enables us to establish a structure theorem for A if A has the property $x \in cl(xA)$ for all $x \in A$. We also give a representation theorem for a primitive Banach algebra in which every maximal closed right ideal is modular and $x \in cl(xA)$ for all $x \in A$. In §5, we study quasi-complementors induced by given quasi-complementors.

We introduce the concept of continuous quasi-complementors in $\S 6$. Then we show that if A is a B^* -algebra which has no minimal left ideals of dimension less than three, then every uniformly continuous quasi-complementor on A is a complementor.

As we observed above, many fundamental properties of a complemented algebra hold for a quasi-complemented algebra. However a quasi-complemented algebra, in general, is not complemented as shown by the examples in §2.

2. Notation and preliminaries. For any subset S in an algebra A, let l(S) and r(S) denote the left and right annihilators of S in A, respectively. Let A be a topological algebra. Then A is called an annihilator algebra if, for every closed left ideal J and for every closed right ideal R, we have r(J) = (0) if and only if J = A and l(R) = (0) if and only if R = A. If l(r(J)) = J and r(l(R)) = R, then A is called a dual algebra.

Received by the editors December 16, 1971.

AMS (MOS) subject classifications (1969). Primary 4650; Secondary 4655.

Key words and phrases. Quasi-complemented algebras, annihilator and dual algebra, complemented algebra, continuous and uniformly continuous quasi-complementors.

⁽¹⁾ This work was supported by a N.R.C. grant.

⁽²⁾ The second author was supported by a postdoctoral fellowship at McMaster University.

Let A be a topological algebra and let L_{τ} be the set of all closed right ideals in A. Then A is called a right quasi-complemented algebra if there exists a mapping $q: R \to R^q$ of L_{τ} into itself having the following properties:

- (2.1) $R \cap R^q = (0) \ (R \in L_*);$
- $(2.2) (R^q)^q = R (R \in L_{\tau});$
- (2.3) if $R_1 \supset R_2$, then $R_2^q \supset R_1^q$ $(R_1, R_2 \in L_r)$.

We call the mapping q a right quasi-complementor on A and R^q the right quasi-complement of R in A. It is clear that the concept of quasi-complementation extends that of orthogonal complementation when A is a Hilbert algebra.

A right quasi-complemented algebra A is called a right complemented algebra if it satisfies:

(2.4)
$$R + R^q = A \ (R \in L_{\tau}).$$

In this case, the mapping q is called a right complementor on A (see [11, p. 615, Definition 1]). A right quasi-complemented algebra may not be right complemented as shown by the following examples:

Example 2.1. Let B and p be given in [1, p. 396, Example 1]. Then p is a right quasi-complementor on B. But p is not a right complementor. However B is a right complemented algebra under the right complementor $R \to l(R)^*$ (see [3, p. 463, Theorem 3.6]).

Example 2.2. Let G be the compact group of real numbers mod 1 and $A = L_p(G)$, where $1 and <math>p \ne 2$. It is well known that A is a commutative dual A^* -algebra which is not an ideal in the completion of its auxiliary norm (see [9, p. 35]). By Theorem 6.5, the mapping $q: R \to l(R)$ is the only right quasi-complementor on A. It follows from [4, p. 233, Theorem 3.8] and [9, p. 35, Theorem 23] that p is not a right complementor on A. Since A has a unique right quasi-complementor, A is not a right complemented algebra.

Analogously we define left quasi-complemented algebras. In this paper, we limit our attention to right quasi-complemented algebras with the remark that similar properties hold for left quasi-complemented algebras. From now on a quasi-complemented (resp. complemented) algebra will always mean a right quasi-complemented (resp. right complemented) algebra.

Let X be a topological space and S a subset in X. Then cl(S) will denote the closure of S in X.

In this paper, all algebras and linear spaces under consideration are over the complex field C. Definitions not explicitly given are taken from Rickart's book [10].

We shall need the following result.

Lemma 2.1. Let A be a semisimple dual algebra in which every maximal modular right ideal is closed. Then for each nonzero closed right ideal R of A,

we have $R = \operatorname{cl}(\Sigma_{\alpha}e_{\alpha}A)$, where $\{e_{\alpha}\}$ is the family of all minimal idempotents of A contained in R.

Proof. By [5, p. 569, Theorem 4.2], $\{e_{\alpha}\}$ is not an empty set. Let $J = \text{cl}(\Sigma_{\alpha}e_{\alpha}A)$. By a similar argument in the proof of [5, p. 570, Theorem 5.1], we have l(J)R = (0) and so $R \subset r(l(J)) = J$. Therefore R = J. This completes the proof.

3. A structure theorem.

Lemma 3.1. Let A be a quasi-complemented algebra with a quasi-complementor q. Then

- (i) For any family of closed right ideals $\{R_{\lambda}\}$ in A, we have $\operatorname{cl}(\Sigma_{\lambda} R_{\lambda}) = (\bigcap_{\lambda} R^{q})^{q}$.
 - (ii) For every closed right ideal R of A, $R + R^q$ is dense in A.

Proof. (i) follows from the proof of [3, p. 461, Lemma 2.1].

(ii) Since $A^q = A^q \cap A = (0)$, we have $(0)^q = A$. Therefore it follows from (i) that

$$cl(R + R^q) = (R^q \cap R)^q = (0)^q = A.$$

Therefore $R + R^q$ is dense in A.

Corollary 3.2. A finite dimensional quasi-complemented normed algebra is a complemented algebra.

Proof. This follows easily from Lemma 3.1(ii).

Lemma 3.3. Let A be a semisimple quasi-complemented algebra in which every maximal modular right ideal is closed. Then the socle of A is dense in A.

Proof. Let $\{R_{\lambda}: \lambda \in \Lambda\}$ be the family of all maximal modular right ideals of A. By the semisimplicity of A, $\bigcap_{\lambda} R_{\lambda} = (0)$ and therefore by Lemma 3.1, $A = \operatorname{cl}(\Sigma_{\lambda} R_{\lambda}^{q})$. Clearly $R_{\lambda}^{q} \neq (0)$; for otherwise $R_{\lambda} = (R_{\lambda}^{q})^{q} = (0)^{q} = A$, a contradiction. Since $R_{\lambda} + R_{\lambda}^{q}$ is a right ideal which contains R_{λ} properly, it follows that $R_{\lambda} + R_{\lambda}^{q} = A$. Therefore by Lemma 3.1 in [7], R_{λ}^{q} is a minimal right ideal. Hence R_{λ}^{q} is contained in the socle S of A and therefore S is dense in A. This completes the proof.

Lemma 3.4. Let A be a semisimple quasi-complemented algebra such that $x \in cl(xA)$ for all $x \in A$. Then each closed two-sided ideal J in A is a quasi-complemented algebra.

Proof. Let R be a closed right ideal in J. Since l(J) = r(J) (see [14, p. 37]) and $J^q J \subset J \cap J^q = (0)$, it follows that $J^q \subset l(J) = r(J) \neq (0)$. Therefore

by the proof of [10, p. 99, Lemma (2.8.11)], R is a closed right ideal in A. Let q be a given quasi-complementor on A and let $R^{qJ} = R^q \cap J$. We show that q_J is a quasi-complementor on J. By Lemma 3.1, we have

$$(R^{qJ})^{qJ} = (R^q \cap I)^q \cap I = \operatorname{cl}(R + I^q) \cap I.$$

Let $x \in (R^{qJ})^{qJ}$ and write $x = \lim_{\alpha} (a_{\alpha} + b_{\alpha})$ with $a_{\alpha} \in R$ and $b_{\alpha} \in J^{q}$. Since $x \in I$, it follows from Lemma 3.1 that

$$xA = x\operatorname{cl}(J + J^q) \subset \operatorname{cl}(x(J + J^q)) = \operatorname{cl}(xJ).$$

Since $x \in cl(xA)$, we have $x \in cl(xJ)$. Therefore we can write $x = \lim_{\beta} xy_{\beta}$ with $y_{\beta} \in J$. Since

$$xy_{\beta} = \lim_{\alpha} (a_{\alpha}y_{\beta} + b_{\alpha}y_{\beta}) = \lim_{\alpha} a_{\alpha}y_{\beta},$$

it follows that $xy_{\beta} \in R$ and consequently $x \in R$. Therefore $(R^{qJ})^{qJ} \subset R$. Since $R^q \cap J \subset R^q$, we have $R \subset (R^{qJ})^{qJ}$ and hence $(R^{qJ})^{qJ} = R$. It is easy to see that the mapping q_J satisfies the conditions (2.1) and (2.3). Therefore it is a quasi-complementor on J and this completes the proof.

We shall need the following result in §7.

Corollary 3.5. Let A, J and q_J be as in Lemma 3.4. If M is a closed right ideal in A, then $M^q \cap J = (M \cap J)^{qJ}$.

Proof. By Lemma 3.1, we have

$$(M^q \cap J)^{qJ} = (M^q \cap J)^q \cap J = c1(M + J^q) \cap J.$$

Hence by the proof of Lemma 3.4, we have $(M^q \cap J)^{qJ} \subset M \cap J$ and so $M^q \cap J \supset (M \cap J)^{qJ}$. Since $M \cap J \subset M$, it follows that $(M \cap J)^q \supset M^q$. Therefore $(M \cap J)^{qJ} \supset M^q \cap J$. Hence $M^q \cap J = (M \cap J)^{qJ}$.

Now we have the following structure theorem.

Theorem 3.6. Let A be a semisimple quasi-complemented algebra in which every maximal modular right ideal is closed and x belongs to cl(xA) for all $x \in A$. Then A is the direct topological sum of its minimal closed two-sided ideals, each of which is a simple quasi-complemented algebra.

Proof. By Lemma 3.3, the socle of A is dense in A. Therefore by [14, p. 31, Lemma 3.11], A is the topological direct sum of its minimal closed two-sided ideals. By Lemma 3.4, each minimal closed two-sided ideal of A is a quasi-complemented algebra and this completes the proof.

Remark. Let A be an algebra. The condition that $x \in cl(xA)$ for all $x \in A$ is automatically satisfied if A has an approximate identity or A is a semisimple complemented algebra. Also, if A is a semisimple dual algebra, it has this property.

4. A representation theorem. The following lemma is implicit in [2, p. 40, Proposition 1].

Lemma 4.1. Let A be a semisimple Banach algebra and I a minimal left ideal in A. Then

- (i) For each closed right ideal R in A, $RI = R \cap I$.
- (ii) For each closed subspace E in I, $E = cl(EA) \cap I$.

Proof. (i). We can write I = Ae, where e is a minimal idempotent of A (see [14, p. 37]). Let R be a closed right ideal in A and let $x \in R \cap I$. Since $x = xe \in RI$, we have $R \cap I \subset RI$. But $RI \subset R \cap I$ and so $RI = R \cap I$. This proves (i).

(ii) Let E be a closed subspace in I and let $R = \operatorname{cl}(EA)$. Since Ee = E, we have $E \subseteq R \cap I$. It follows from (i) that

$$R \cap I = cl(EA)I \subset E(eAe) = Ee = E$$
.

Therefore $E = cl(EA) \cap I$ and this completes the proof.

Let A be a primitive quasi-complemented Banach algebra and I a minimal left ideal of A. Then I = Ae for some minimal idempotent e of A. By [10, p. 68, Corollary (2.4.16)], the left regular representation $a \to T_a$ of A is a faithful, continuous, strictly dense representation on I. Let $A' = \{T_a : a \in A\}$. Then by [10, p. 67, Theorem (2.4.12)], the image of the socle of A is the set of all operators of finite rank in A'. Since by Lemma 3.3, the socle of A is dense in A, it follows that A is a simple algebra (see [10, p. 65]).

Lemma 4.2. Let A be a primitive Banach algebra with a quasi-complementor q such that $x \in cl(xA)$ for all $x \in A$. For each closed subspace E in I, let $E' = [cl(EA)]^q \cap I$. Then an inner product (x, y) can be introduced in I having the following properties:

- (i) I becomes a Hilbert space under (x, y).
- (ii) The norm $|x| = (x, x)^{1/2}$ is equivalent to the given norm ||x|| in I.
- (iii) If A is infinite-dimensional, then E' is the orthogonal complement of E in I.

Proof. Let $R = [cl(EA)]^q$. Since A is a simple algebra and since IA is a two-sided ideal in A, IA is dense in A. Let $x \in R$. Then

$$xA = x \operatorname{cl}(IA) \subset \operatorname{cl}(xIA) \subset \operatorname{cl}(RIA)$$
.

Since $x \in cl(xA)$, it follows that $x \in cl(RIA)$ and so $R \subset cl(RIA)$. Clearly $R \supset cl(RIA)$. Hence R = cl(RIA). Therefore by Lemma 4.1(i), $R = cl((R \cap I)A) = cl(E'A)$. Hence it follows from Lemma 4.1(ii) that

$$E'' = [\operatorname{cl}(E'A)]^q \cap I = R^q \cap I = \operatorname{cl}(EA) \cap I = E.$$

If $x \in E \cap E'$, then by Lemma 4.1(ii) $x \in cl(EA) \cap [cl(EA)]^q$ and so x = 0.

Therefore $E \cap E' = (0)$. If E_1 and E_2 are closed subspaces of I such that $E_1 \subseteq E_2$, then clearly $E_1' \supseteq E_2'$. Therefore by [8, p. 731, Theorem 2], an inner product (x, y) can be introduced in I having properties (i) and (ii). If A is infinite dimensional, then so is I. Hence (iii) follows from [8, p. 729, Theorem 1]. We have the following representation theorem.

Theorem 4.3. Let A be a primitive quasi-complemented Banach algebra in which every maximal closed right ideal is modular and $x \in cl(xA)$ for all $x \in A$. Then there exists a continuous isomorphism of A onto an algebra A' of completely continuous operators on a Hilbert space. Also A is a dual algebra.

Proof. Let I be a minimal left ideal in A. By Lemma 4.2, I is a Hilbert space. Let $a \to T_a$ be the left regular representation of A on I and $A' = \{T_a : a \in A\}$. Then $a \to T_a$ is a continuous isomorphism of A onto A'. Letting A' have the given norm of A, we can identify A with A'. Let q be a given quasicomplementor on A and R a proper closed right ideal of A. Since the socle of A is dense in A, by [14, p. 37, Lemma 3.1], R^q contains a minimal right ideal M. It is easy to see that M^q is a maximal closed right ideal and so modular by the assumption. Therefore by [14, p. 38, Lemma 3.3], $I(M^q) \neq (0)$. Since $R \subset M^q$, it follows that $I(R) \neq (0)$. Therefore by the proof of [10, p. 101, Lemma (2.8.20)], A contains all operators of finite rank on A. Hence A is an algebra of completely continuous operators on A (see the proof of A is an algebra. Since A is reflexive and since A is a dual algebra.

Corollary 4.4. Let A be a semisimple quasi-complemented Banach algebra in which $x \in cl(xA)$ for all $x \in A$. Then A is an annihilator algebra if and only if every maximal closed right ideal of A is modular.

Proof. Suppose every maximal closed right ideal of A is modular. Let I be a minimal closed two-sided ideal of A and M a maximal closed right ideal of I. By the proof of Lemma 3.4, M^{qI} is a minimal right ideal of I and A. Therefore $N = (M^{qI})^q$ is a maximal modular right ideal of A. Since $M^{qI} \oplus N = A$, by [3, p. 462, Lemma 3.1] N = (1 - e)A and $M^{qI} = eA$, where e is a minimal idempotent. Since $e \in I$, $M = (M^{qI})^{qI} = N \cap I = (1 - e)I$. Therefore M is modular. By the proof of Lemma 3.4, we have $x \in cl(xI)$ for all $x \in I$. Hence by Theorem 4.3, I is an annihilator algebra and so is A by [10, p. 106, Theorem (2.8.29)]. The converse of the corollary follows from [10, p. 98, Corollary (2.8.7)].

Theorem 4.5 (we use the notation in Theorem 4.3.). If A' is a two-sided ideal of B(I), the set of all continuous linear operators on I, then every quasicomplementor q on A is a complementor.

Proof. By Corollary 3.2, we can assume that A is infinite dimensional. In this proof, we identify A with A'. Let R be a closed right ideal in A. To complete the proof, it suffices to show that $R+R^q$ is closed by Lemma 3.1. Let $E=R\cap I$ and let $E'=[\operatorname{cl}(EA)]^q\cap I$. By Lemma 4.2(iii), E' is the orthogonal complement of E in I. Denote the orthogonal projection on E by P. Let $a\in\operatorname{cl}(R+R^q)$ and write $a=\lim_n (b_n+c_n)$ with $b_n\in R$ and $c_n\in R^q$. Since $b_nI\subset RI=R\cap I=E$, we have $(Pb_n)(b)=b_n(b)$ for all $b\in I$. Hence $Pb_n=b_n$. Since

$$c_n I \subset R^q \cap I = [\operatorname{cl}(RIA)]^q \cap I = \operatorname{cl}(EA)^q \cap I = E',$$

we have $Pc_n = 0$. By the proof of [2, p. 41, Theorem 3], we have $||Pa - b_n|| \le k ||a - b_n - c_n||$, where k is a constant. Hence we have $Pa \in R$ and so $a - Pa \in R^q$. Therefore $a = Pa + (a - Pa) \in R + R^q$. Hence $R + R^q$ is closed and this completes the proof.

- 5. Induced quasi-complementors. In this section, unless otherwise stated, A will be a semisimple Banach algebra with norm $\|\cdot\|$ which is a dense subalgebra of a semisimple Banach algebra B with norm $|\cdot|$. Further A and B have the following properties:
- (5.1) There exists a constant k such that $k||x|| \ge |x|$ for all $x \in A$, i.e., $||\cdot||$ majorizes $|\cdot|$.
- (5.2) Every proper closed left (right) ideal in B is the intersection of maximal modular (right) ideals in B.

Notation. For any subset E of A, $\operatorname{cl}_A(E)$ (resp. $\operatorname{cl}(E)$) will denote the closure of E in A (resp. B) and $\operatorname{l}_A(E)$ and $\operatorname{r}_A(E)$ (resp. $\operatorname{l}(E)$ and $\operatorname{r}(E)$) the left and right annihilators of E in A (resp. B).

Lemma 5.1. Let A be an annihilator algebra. Then

- (i) For each closed right ideal R of A, we have $cl(R) \cap A = r_A(l_A(R))$.
- (ii) If M is a closed right ideal of B, then $M = cl(M \cap A)$.

Proof. First we note that B is a dual algebra [13, p. 81] and A and B have the same socle S (Lemma 4.1 in [7]).

(i) Let $\{e_{\alpha}\}$ be the family of all minimal idempotents of B contained in l(R). Since B is a dual algebra, it follows from Lemma 2.1 that $\operatorname{cl}(\Sigma_{\alpha} Be_{\alpha}) = l(R)$. Since $e_{\alpha} \in l(R) \cap S \subset l(R) \cap A = l_A(R)$, we have $\operatorname{cl}(l_A(R)) \supset l(R)$. Clearly $l(R) \supset \operatorname{cl}(l_A(R))$ and therefore $\operatorname{cl}(l_A(R)) = l(R) = l(\operatorname{cl}(R))$. Hence by the duality of B, we have

$$r_A(l_A(R)) = r(l_A(R)) \cap A = r(\operatorname{cl}(l_A(R))) \cap A = r(l(\operatorname{cl}(R))) \cap A = \operatorname{cl}(R) \cap A.$$

This proves (i).

(ii) Let $\{e_{\mathcal{B}}\}$ be the family of all minimal idempotents of \mathcal{B} contained in \mathcal{M} .

By Lemma 2.1, $M = \operatorname{cl}(\Sigma_{\beta}e_{\beta}B)$. Since each $e_{\beta}B \subset M \cap S \subset M \cap A$, we have $\Sigma_{\beta}e_{\beta}B \subset M \cap A$. It is now easy to see that $M = \operatorname{cl}(M \cap A)$. This completes the proof.

Lemma 5.2. Let A be an annihilator algebra. Then the following statements are equivalent:

- (i) A is a dual algebra.
- (ii) For each element $x \in A$, we have $x \in cl_A(xA) \cap cl_A(Ax)$.
- (iii) For each closed right (left) ideal R of A, we have $R = cl(R) \cap A$.

Proof. (i) \Rightarrow (ii). This follows immediately from [10, p. 97, Corollary (2.8.2)].

(ii) \Rightarrow (iii). Suppose (ii) holds. Let S be the socle of A. By Lemma 4.1 in [7], S is also the socle of B. Let R be a closed right ideal of A. We show that $\operatorname{cl}(R)S \subset R$. In fact, let $x \in \operatorname{cl}(R)$, $y \in A$ and e a minimal idempotent in A. Let $\{x_n\}$ be a sequence in R such that $x_n \to x$ in $|\cdot|$. By the proof of [13, p. 82, Lemma 3.2], the norms $||\cdot||$ and $|\cdot|$ are equivalent on Ae = Be. Hence it follows easily that $x_n ye \to xye$ in $||\cdot||$. Therefore $xye \in R$ and so $\operatorname{cl}(R)S \subset R$. Let $a \in \operatorname{cl}(R) \cap A$. Then we have

$$a \in \operatorname{cl}_A(aA) = \operatorname{cl}_A(aS) \subset \operatorname{cl}_A(\operatorname{cl}(R)S) \subset R.$$

Hence $cl(R) \cap A \subseteq R$. Clearly $R \subseteq cl(R) \cap A$ and so $R = cl(R) \cap A$. This proves (iii).

(iii) \Rightarrow (i). Suppose (iii) holds. Let R be a closed right ideal of A. By Lemma 5.1, we have $R = c1(R) \cap A = r_A(l_A(R))$. Similarly we can show that $J = l_A(r_A(J))$ for all closed left ideals J of A. Therefore A is a dual algebra and the proof is complete.

Theorem 5.3. Let A be a dual algebra. Then for every quasi-complementor p on B, the mapping $q: R \to [cl(R)]^p \cap A$ on the closed right ideals R of A is a quasi-complementor on A.

Proof. Let R be a closed right ideal of A. Since A is a dual algebra, by Lemma 5.2, $R = \operatorname{cl}(R) \cap A$. Therefore

$$R \cap R^q = \operatorname{cl}(R) \cap [\operatorname{cl}(R)]^p \cap A = (0).$$

By Lemma 5.1, we have $[c1(R)]^p = c1([c1(R)]^p \cap A)$. Therefore it follows that

$$(R^q)^q = [cl([cl(R)]^p \cap A)]^p \cap A = [cl(R)]^{pp} \cap A = cl(R) \cap A = R.$$

If R_1 and R_2 are closed right ideals of A such that $R_1 \supset R_2$, then clearly $R_1^q \subset R_2^q$. Therefore q is a quasi-complementor on A.

We now establish the converse of Theorem 5.3.

Theorem 5.4. Let A be a dual algebra. Then for every quasi-complementor q

on A, the mapping $p: M \to cl([M \cap A]^q)$ on the closed right ideals M of B is a quasi-complementor on B.

Proof. Let M be a closed right ideal of B. Then it follows from Lemma 5.2 that $M \cap M^p \cap A = [M \cap A] \cap [M \cap A]^q = (0)$. Hence it follows from Lemma 5.1 that $M \cap M^p = \operatorname{cl}(M \cap M^p \cap A) = (0)$. We also have

$$(M^p)^p = cl([cl([M \cap A]^q) \cap A]^q) = cl([M \cap A]^{qq}) = M.$$

If M_1 and M_2 are closed right ideals of B such that $M_1 \supset M_2$, then clearly $M_1^p \subset M_2^p$. Therefore p is a quasi-complementor on B and this completes the proof.

6. Continuous quasi-complementors on A*-algebras.

Theorem 6.1. Let A be a dual A^* -algebra. Then A is a quasi-complemented algebra under the quasi-complementor $q: R \to l(R)^*$.

Proof. Let R be a closed right ideal of A. Since $I(R)^* = r(R^*)$, by the duality of A, we have $(R^q)^q = R$. It is easy to see that q has properties (2.1) and (2.3). Therefore q is a quasi-complementor on A and this completes the proof.

It is known that a B^* -algebra is complemented if and only if it is dual (see [3, p. 463, Theorem 3.6]). A similar result is true for quasi-complemented algebras. In fact we have the following:

Corollary 6.2. Let A be an A^* -algebra which is a dense two-sided ideal of a B^* -algebra B. Then A is a dual algebra if and only if A is quasi-complemented and $x \in cl(xA)$ for all $x \in A$.

Proof. Suppose A is quasi-complemented and $x \in cl(xA)$ for all $x \in A$. Let e be a minimal idempotent of A. Clearly Ae = Be. Therefore by Lemma 3.3 and Theorem 4.3 in [7], A is an annihilator algebra. Hence by Lemma 5.2, A is a dual algebra. The converse of the corollary follows from Theorem 6.1 and Lemma 5.2.

Corollary 6.3. Let A be a B^* -algebra. Then A is a dual if and only if A is quasi-complemented.

Proof. Since a B^* -algebra has an approximate identity, it follows that $x \in cl(xA)$. Therefore Corollary 6.3 follows immediately from Corollary 6.2.

Lemma 6.4. Let A be an annihilator semisimple Banach algebra with a quasi-complementor q. Then for every maximal closed right ideal R of A, there exists a unique minimal idempotent f such that $R^q = fA$ and R = (1 - f)A.

Proof. By [10, p. 97, Theorem (2.8.5)], R is a maximal modular right ideal of A. Since $R + R^q = A$, by [3, p. 462, Lemma 3.1] we have the desired result.

Definition. Let A be a quasi-complemented Banach algebra. A minimal idempotent f in A is called a q-projection if $(fA)^q = (1 - f)A$.

We now introduce the concept of continuous quasi-complementor on annihilator A^* -algebras. This is similar to the concept of continuous complementor on B^* -algebras (see [3, p. 463, Definition 3.7]).

Definition. Let A be an annihilator A^* -algebra with a quasi-complementor q. Let E denote the set of all hermitian minimal idempotents and E_q the set of all q-projections in A. For each $e \in E$, let Q(e) be the unique element of E_q such that Q(e)A = eA (Lemma 6.4). The mapping $Q: e \to Q(e)$ is called the q-derived mapping of E into E_q . The quasi-complementor q is said to be continuous if Q is continuous in the relative topologies of E and E_q induced by the given norm on A.

Remark 1. Since by [10, p. 261, Lemma (4.10.1)] every minimal right ideal of A is of the form eA with a unique $e \in E$, it follows that Q maps E onto E_a .

Remark 2. Let A and q be as in Theorem 6.1. Then $E = E_q$ and so the q-derived mapping Q of q is the identity mapping. Hence q is uniformly continuous.

For commutative dual A^* -algebras, the study of quasi-complementor becomes very trivial.

Theorem 6.5. Let A be a commutative dual A^* -algebra. Then there is only one quasi-complementor q on A; q is uniformly continuous.

Proof. Let B be the completion of A in an auxiliary norm. We use the notation introduced in §5. The existence of a quasi-complementor on A is given by Theorem 6.1. Let q be any given quasi-complementor on A. By Theorem 5.6, q induces a quasi-complementor p on B. Let M be a closed ideal in B. Since $M \cap M^q = (0)$, it follows from [10, p. 259, Corollary (4.9.22)] that $M + M^q$ is a closed ideal in B. Therefore, by Lemma 3.1, $M + M^p = B$. Since $MM^p \subset M \cap M^p = (0)$, $M^p \subset l(M) = r(M)$. Since M + l(M) = B, it follows that $M^p = l(M)$. Let R be an ideal in A. Then we see that $R = R^*$ and $R^q = [cl(R)]^p \cap A = l_A(R)$. Therefore q is uniquely determined. By Remark 2, q is uniformly continuous and this completes the proof.

Corollary 6.6. Let A be a commutative dual A^* -algebra which is a dense two-sided ideal of a B^* -algebra. Then there is a unique complementor q on A; q is uniformly continuous.

Proof. This follows easily from Theorem 6.5, [4, p. 233, Theorem 3.8] and [9, p. 30, Theorem 16].

7. Quasi-complementors on B^* -algebras. In this section, unless otherwise stated, A will be a B^* -algebra with a quasi-complementor q. By Corollary 6.3, A is a dual algebra.

Let H be a Hilbert space with inner product (,). If x and y are elements of H, then $x \otimes y$ will denote the operator on H given by the relation $(x \otimes y)(h) = (h, y)x$ for all $h \in H$. LC(H) will denote the algebra of all completely continuous linear operators on H. If A is a simple dual B^* -algebra, then it is well known that A = LC(H) for some Hilbert space H. H can be chosen as a minimal left ideal in A with the inner product given in [10, p. 261, Theorem (4.10.3)].

Lemma 7.1. Let A be a simple B^* -algebra. Then every quasi-complementor q on A is a complementor.

Proof. Since A has the form LC(H), it follows from Theorem 4.5 that q is a complementor on A.

Notation. Let A = LC(H). For every closed subspace X of H, let $J(X) = \{a \in A: a(H) \subset X\}$. For every closed right ideal R of A, let S(R) be the smallest closed subspace of H that contains the range a(H) of each operator a in R.

Let A = LC(H). For each closed right ideal R of A, by Lemma 7.1, the projection P_R on R along R^q is continuous. Let P'_R be the projection on S(R) along $S(R^q)$. Since by [3, p. 464, Lemma 4.1], $S(R) \oplus S(R^q) = H$, it follows that P'_R is continuous.

Lemma 7.2. Let R be a closed right ideal of A = LC(H). Then $||P_R|| = ||P_R'||$.

Proof. Let k > 0 be given. Choose $x \in A$ such that $||x|| \le 1$ and $||P_R(x)|| \ge ||P_R|| - k/2$. Hence there exists some $h \in H$ such that $||h|| \le 1$ and $||(P_R(x))(h)|| > ||P_R|| - k$. Write x = y + z with $y \in R$ and $z \in R^q$. Then $y(h) \in S(R)$ and $z(h) \in S(R^q)$ and so

$$||P'_{R}(x(b))|| = ||y(b)|| = ||(P_{R}(x))(b)|| > ||P_{R}|| - k.$$

Since $||x(b)|| \le 1$ and k is arbitrary, it follows that $||P_R'|| \ge ||P_R||$. By using [3, p. 464, Lemma 4.1] and a similar argument, we can show that $||P_R'|| \ge ||P_R||$. Therefore $||P_R|| = ||P_R'||$.

Lemma 7.3. Suppose A = LC(H) with dim $H \ge 3$, q a continuous quasi-complementor on A and R a closed right ideal of A. If $||P_R|| > k$ for some constant k, then there exists a q-projection $f \in R$ such that ||f|| > k.

Proof. By Lemma 7.2, $||P'_R|| > k$. Hence there exists an element $b \in H$ such that ||b|| = 1 and $||P'_R(b)|| > k$. Write b = u + v with $u \in S(R)$ and $v \in S(R^q)$. It is clear that $u \neq 0$. Let Q be a q-representing operator on H (see [3, p. 467, Definition 5.4]) and put $f = (u \otimes Qu)/(u, Qu)$. Then f is a q-projection (see [3, p. 467]). Since $u \in S(R)$, $f \in R$. Let $\langle x, y \rangle = \langle x, Qy \rangle$ for all $x, y \in H$. Since q is a continuous complementor, by the proof of [3, p. 473, Theorem 6.11], S(R) is the orthogonal complement of $S(R^q)$ in H relative to the inner product $\langle x, y \rangle$. Since

 $v \in S(R^q)$ and since $u \in S(R)$, we have $(v, Qu) = \langle v, u \rangle = 0$ and therefore f(b) = u. Hence we have $||f(b)|| = ||u|| = ||P'_R(b)|| > k$. Since ||b|| = 1, ||f|| > k and this completes the proof.

Let A be a B^* -algebra with a quasi-complementor q. Let $\{I_{\lambda}: \lambda \in \Lambda\}$ be the family of all minimal closed two-sided ideals of A. Since A is a dual B^* -algebra, $A = (\Sigma_{\lambda} I_{\lambda})_0$, the $B^*(\infty)$ -sum of $\{I_{\lambda}: \lambda \in \Lambda\}$. Since each I_{λ} is a simple dual B^* -algebra, $I_{\lambda} = LC(H_{\lambda})$ for some Hilbert space H_{λ} ($\lambda \in \Lambda$). By Corollary 3.5, q induces a quasi-complementor q_{λ} on each I_{λ} . By Lemma 7.1, q_{λ} is a complementor on I_{λ} .

Let E (resp. E_{λ}) be the set of all hermitian minimal idempotents in A (resp. I_{λ}) and let E_q (resp. E_q^{λ}) be the set of all q-projections in A (resp. I_{λ}). Clearly $E_{\lambda} = E \cap I_{\lambda}$ and $E_q^{\lambda} = E_q \cap I_{\lambda}$ ($\lambda \in \Lambda$).

Lemma 7.4. A quasi-complementor q on A is continuous if and only if each q_{λ} is continuous.

Proof. By a similar argument in [3, p. 464, Theorem 3.9], we have the desired result.

Lemma 7.5. Let A be a B^* -algebra which has no minimal left ideal of dimension less than three and q a quasi-complementor on A. If E_q is a closed and bounded subset of A, then q is a complementor on A.

Proof. For each closed right ideal R_{λ} of $LC(H_{\lambda})$, let $P_{R_{\lambda}}$ be the projection on R_{λ} along $R_{\lambda}^{q_{\lambda}}$. Let

$$k_{\lambda} = \sup\{\|P_{R_{\lambda}}\|: R_{\lambda} \subset LC(H_{\lambda})\} \quad (\lambda \in \Lambda),$$

and let

$$k = \sup\{k_{\lambda} : \lambda \in \Lambda\}.$$

We show that k is finite. Suppose this is not so. Then for each positive integer n, there exists some $k_n \in \{k_\lambda \colon \lambda \in \Lambda\}$ such that $k_n > n$. Hence there exists a closed right ideal $R_n \subset LC(H_n)$ such that $\|P_{R_n}\| > n$. Since $E_q^n = E_q \cap I_n$, it follows immediately from the assumption that E_q^n is a closed and bounded subset of I_n . Since q_n is a complementor on I_n , by [12, p. 257, Theorem 3], q_n is continuous. Since $\|P_{R_n}\| > n$, it follows from Lemma 7.3 that there exists some $f_n \in E_q^n \subset E_q$ such that $\|f_n\| > n$ $(n = 1, 2, \cdots)$. This contradicts the boundedness of E_q and shows that k is finite.

Let M be a closed right ideal of A and let $M_{\lambda} = M \cap I_{\lambda}$ ($\lambda \in \Lambda$). Since $A = (\sum_{\lambda} I_{\lambda})_0$, we see that $M = (\sum_{\lambda} M_{\lambda})_0$. Since by Corollary 3.5, $M^q \cap I_{\lambda} = M_{\lambda}^{q\lambda}$, we have

$$M^q = (\sum_{\lambda} M^q \cap I_{\lambda})_0 = (\sum_{\lambda} M^q_{\lambda} \lambda)_0.$$

Let $x = (x_{\lambda}) \in A$ and write $x_{\lambda} = y_{\lambda} + z_{\lambda}$, where $y_{\lambda} \in M_{\lambda}$ and $z_{\lambda} \in M_{\lambda}^{q_{\lambda}}$. Then $\|y_{\lambda}\| = \|P_{M_{\lambda}}x_{\lambda}\| \le k\|x_{\lambda}\|$ $(\lambda \in \Lambda)$. Since k is finite, it follows that $(y_{\lambda}) \in (\Sigma_{\lambda}M_{\lambda})_0 = M$. Similarly we have $(z_{\lambda}) \in M^q$. Therefore $A = M + M^q$ and so q is a complementor on A.

We can now prove the main result of this section.

Theorem 7.6. Let A be a B^* -algebra which has no minimal left ideal of dimension less than three and q a quasi-complementor on A. If q is uniformly continuous, then it is a complementor.

Proof. By Lemma 7.5, it suffices to show that E_q^{λ} is a closed and bounded subset of A. By Lemma 7.4 and [12, p. 257, Theorem 3] each E_q^{λ} is closed and bounded. Hence it follows that E_q is closed. It remains to show that E_q is bounded. Suppose this is not so. Then we can choose a sequence of q-projections f_n such that $f_n \in E_q^n$ and $||f_n|| > n$ $(n = 1, 2, \cdots)$. Let T_n be a q-representing operator on H_n . Then by [3, p. 470, Theorem 6.4], T_n is a continuous positive linear operator with inverse T_n^{-1} . We may assume that $||T_n^{-1}|| = 1$ for all n (see [3, p. 472, Corollary 6.10]). We can write

$$f_n = (u_n \otimes T_n u_n)/(u_n, T_n u_n),$$

where $u_n \in H_n$ and $||u_n|| = 1$ $(n = 1, 2, \dots)$ (see [3, p. 467]). Since

$$\inf\{(b_n,\ T_nb_n)\colon \|b_n\|=1\ \text{and}\ b_n\in H_n\}=\|T_n^{-1}\|^{-1}=1,$$

if follows from (*) that $\|T_nu_n\| > n$ $(n=1, 2, \cdots)$. Let Q be the q-derived mapping of q. By using the argument in [3, p. 477, Theorem 7.4], we can find minimal idempotents a_n , $b_n \in E$ such that $\|a_n - b_n\| \to 0$ and $\|Q(a_n) - Q(b_n)\| \to \infty$. This contradicts the uniform continuity of Q. Therefore E_q is bounded and this completes the proof.

Remark. Let B and p be given in [1, p. 396, Example 1]. Then p is a continuous quasi-complementor on B. But p is not a complementor. Therefore a continuous quasi-complementor may not be uniformly continuous by Theorem 7.6. However a continuous complementor on a B^* -algebra is uniformly continuous (see [1] and [3]).

Corollary 7.7. Let A be as in Theorem 7.6. Then a quasi-complementor q on A is uniformly continuous if and only if E_q is a closed and bounded subset of A.

Proof. The corollary follows immediately from Theorem 7.6 and [12, p. 257, Theorem 3].

REFERENCES

- 1. F. E. Alexander, Representation theorems for complemented algebras, Trans. Amer. Math. Soc. 148 (1970), 385-397. MR 43 #916.
- 2. ———, On complemented and annihilator algebras, Glasgow J. Math. 10 (1969), 38-45. MR 39 #6086.
- 3. F. E. Alexander and B. J. Tomiuk, Complemented B*-algebras, Trans. Amer. Math. Soc. 137 (1969), 459-480. MR 38 #5009.
- 4. G. F. Bachelis, Homomorphisms of annihilator Banach algebras, Pacific J. Math. 25 (1968), 229-247. MR 39 #6076.
- 5. B. A. Barnes, Modular annihilator algebras, Canad J. Math. 18 (1966), 566-578. MR 33 #2681.
- 6. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 7. T. Husain and P. K. Wong, On generalized right modular complemented algebras, Studia Math. 45 (1972) 37-42.
- 8. S. Kakutani and G. W. Mackey, Ring and lattice characterizations of complex Hilbert space, Bull. Amer. Math. Soc. 52 (1946), 727-733. MR 8, 31.
- 9. T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach *-algebras, J. Sci. Hiroshima Univ. Ser. A. 18 (1954), 15-36. MR 16, 1126.
- 10. C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J. 1960. MR 22 #5903.
- 11. B. J. Tomiuk, Structure theory of complemented Banach algebras, Canad. J. Math. 14 (1962), 651-659. MR 26 #626.
- 12. P. K. Wong, Continuous complementors on B*-algebras, Pacific J. Math. 33 (1970), 255-260.
- 13, ———, On the Arens product and annihilator algebras, Proc. Amer. Math. Soc. 30 (1971), 79-83.
- 14. B. Yood, Ideals in topological rings, Canad. J. Math. 16 (1964), 28-45. MR 28 #1505.

DEPARTMENT OF MATHEMATICS, McMASTER UNIVERSITY, HAMILTON, ONTARIO, CANADA (Current address of T. Husain)

Current address (P. K. Wong): Department of Mathematics, Seton Hall University, South Orange, New Jersey 07079